Assimilating canopy reflectance data into an ecosystem model with an Ensemble Kalman Filter
نویسندگان
چکیده
An Ensemble Kalman Filter (EnKF) is used to assimilate canopy reflectance data into an ecosystem model. We demonstrate the use of an augmented state vector approach to enable a canopy reflectance model to be used as a non-linear observation operator. A key feature of data assimilation (DA) schemes, such as the EnKF, is that they incorporate information on uncertainty in both the model and the observations to provide a best estimate of the true state of a system. In addition, estimates of uncertainty in the model outputs (given the observed data) are calculated, which is crucial in assessing the utility of model predictions. Results are compared against eddy-covariance observations of CO2 fluxes collected over three years at a pine forest site. The assimilation of 500 m spatial resolution MODIS reflectance data significantly improves estimates of Gross Primary Production (GPP) and Net Ecosystem Productivity (NEP) from the model, with clear reduction in the resulting uncertainty of estimated fluxes. However, foliar biomass tends to be overestimated compared with measurements. Issues regarding this over-estimate, as well as the various assumptions underlying the assimilation of reflectance data are discussed. © 2007 Elsevier Inc. All rights reserved.
منابع مشابه
Assimilating Reflectance Data into a Ecosystem Model to Improve Estimates of Terrestrial Carbon Flux
Ecosystem models are valuable tools for understanding the growth of vegetation, its response to climatic change and its role in the cycling of greenhouse gasses. Data Assimilation (DA) of synoptic coverage Earth Observation (EO) data into ecosystem models provides a statistically optimal mechanism for constraining the model state vector trajectory both spatially and temporally. EO “products” su...
متن کاملA global carbon assimilation system using a modified ensemble Kalman filter
A Global Carbon Assimilation System based on the ensemble Kalman filter (GCAS-EK) is developed for assimilating atmospheric CO2 data into an ecosystem model to simultaneously estimate the surface carbon fluxes and atmospheric CO2 distribution. This assimilation approach is similar to CarbonTracker, but with several new developments, including inclusion of atmospheric CO2 concentration in state ...
متن کاملAssimilation of Remotely-Sensed Leaf Area Index into a Dynamic Vegetation Model for Gross Primary Productivity Estimation
Quantitative estimation of the magnitude and variability of gross primary productivity (GPP) is required to study the carbon cycle of the terrestrial ecosystem. Using ecosystem models and remotely-sensed data is a practical method for accurately estimating GPP. This study presents a method for assimilating high-quality leaf area index (LAI) products retrieved from satellite data into a process-...
متن کاملLocal Ensemble Transform Kalman Filter: An Efficient Scheme for Assimilating Atmospheric Data
We present an efficient variation of the Local Ensemble Kalman Filter (Ott et al. 2002, 2004) and the results of perfect model tests with the Lorenz-96 model. This scheme is locally analogous to performing the Ensemble Transform Kalman Filter (Bishop et al. 2001). We also include a four-dimensional extension of the scheme to allow for asynchronous observations.
متن کاملAssimilating Nonlocal Observations using a Local Ensemble Kalman Filter
Many ensemble Kalman filter data assimilation schemes benefit from spatial localization, often in both the horizontal and vertical coordinates. On the other hand, satellite observations are often sensitive to the dynamics over a broad layer of the atmosphere; that is, the observation operator that maps the model state to the observed satellite radiances is a nonlocal function of the state. Simi...
متن کامل